
The multicomponent Eckhaus equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 5805

(http://iopscience.iop.org/0305-4470/30/16/021)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 02/06/2010 at 05:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 5805–5814. Printed in the UK PII: S0305-4470(97)82162-2

The multicomponent Eckhaus equation

F Calogero†§, A Degasperis† and S De Lillo‡
† Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Dipartimento di Fisica, Università di
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Abstract. The ‘n-component Eckhaus equation’,
iψt + Aψxx + (ψ,Cψ)xAψ + 2(ψ,Cψ)Aψx + [(ψx ,CAψ)− (ψ,CAψx)]ψ

+(ψ,Cψ)2Aψ = 0
is C-integrable. Here the dependent variableψ ≡ ψ(x, t) is ann-vector, andA andC are two
constant(n× n)-matrices restricted by the condition that bothC and CA be Hermitian. Some
special cases, and some explicit solutions, are displayed.

1. Introduction

Some years ago it was noted that thenonlinearevolution partial differential equation

iψt + ψxx + ψ [|ψ |4+ 2(|ψ |2)x ] = 0 ψ ≡ ψ(x, t) (1.1)

has auniversal character and isC-integrable, [1], being linearizable via the change of
dependent variable

ϕ(x, t) = ψ(x, t)exp

[ ∫ x

−∞
dx ′|ψ(x ′, t)|2

]
(1.2a)

ψ(x, t) = ϕ(x, t)/
[

1+ 2
∫ x

−∞
dx ′|ϕ(x ′, t)|2

]1/2

(1.2b)

which transforms (1.1) into thelinear Schr̈odinger equation

iϕt + ϕxx = 0 ϕ ≡ ϕ(x, t). (1.3)

The importance of the universal character of (1.1) was subsequently elaborated in the context
of a detailed explanation of the remarkable fact, that certain nonlinear evolution PDEs are
both widely applicable and integrable [2].

Since the original idea which underpins the universal character of (1.1) is due to Eckhaus,
this equation was called the ‘Eckhaus equation’ in a paper which used thedirect andinverse
transformations (1.2) to analyse the detailed behaviour of various solutions of (1.1), thereby
explicitly displaying the mechanism that underlies certain remarkable ‘solitonic’ phenomena
(such as the predominantly ‘elastic’ character of solitonic collisions) [3].

Subsequently the Eckhaus equation (1.1) has been extended to include an external
potential [4], and it has been generalized to an(N + 1)-dimensional context [5] (N space
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variables and one time variable; the original Eckhaus equation (1.1) refers of course to
a (1 + 1)-dimensional context). Some graphs of soliton-like solutions of the(2 + 1)-
dimensional Eckhaus equation in an external oscillator potential have also been published
[6].

The purpose and scope of this paper is to exhibit the natural extension of the Eckhaus
equation (1.1) to themulticomponentcase, including thedirect and inversetransformations
that demonstrate itsC-integrability. We also exhibit various special cases and reductions,
show how to solve the initial-value (‘Cauchy’) problem, and analyse in detail various
examples of solitonic behaviour, including the display of (single) solitons which move
with non-constant speeds and may even boomerang back. Extensions to include an external
potential [4] and to a multidimensional context [5, 7] are easy.

Note that, in writing the direct and inverse transformations (1.2), we have implicitly
assumed that bothϕ(x, t) andψ(x, t) vanish, asx → −∞, sufficiently fast to guarantee
that the integrals on the right-hand sides of these equations converge. These transformations
are particularly appropriate for studing the Eckhaus equation (1.1) on the whole line, with
vanishing boundary conditions atx = −∞. For the treatment of more general cases,
including boundary-value problems and involving transformations of type (1.2) with a finite
lower limit of integration, the interested reader is referred to [2, 8].

Let us finally recall that the integrable character of the nonlinear evolution equation (1.1)
was known [9] before its universality was recognized [1, 2], and let us reiterate that in this
paper our presentation is limited to exhibiting the multicomponent Eckhaus equation (see
(2.1) below) and demonstrating itsC-integrability. The general technique which underpins
these results has been amply illustrated in previous papers [9, 2, 10, 5, 7, 11]; indeed the last
of these papers already presents (a special case of) the multicomponent Eckhaus equation.

2. The multicomponent Eckhaus equation

The multicomponent(or, equivalently,n-vector) Eckhaus equation reads as follows

iψt + Aψxx + (ψ,Cψ)xAψ + 2(ψ,Cψ)Aψx
+[(ψx,CAψ)− (ψ,CAψx)]ψ + (ψ,Cψ)2Aψ = 0

(2.1a)

or, equivalently (see below),

iψt + Aψxx + 2FAψx + [G+ (Fx + F 2)A]ψ = 0 (2.1b)

where the scalar functionsF andG are

F = (ψ,Cψ) G = 2iIm(ψx,CAψ). (2.1c)

Here and below the dependent variableψ ≡ ψ(x, t) is ann-vector; forn-vectors we
employ the scalar-product notation

(u,v) ≡
n∑

m=1

u∗mvm (2.2)

andA andC are two constant (n× n)-matrices satisfying the (n-matrix) conditions

(CA)+ = CA (2.3)

C+ = C, (2.4)

whereM+ is the Hermitian conjugate ofM so that

(M+)jk ≡ M∗kj . (2.5)
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Let us display some special cases.
If the matrix A is Hermitian,A+ = A, then A and C are two commuting Hermitian

matrices (see (2.3) and (2.5)) which, with no loss of generality, can be assumed to be real
and diagonal,

A = diag(am) am = a∗m (2.6a)

C = diag(cm) cm = c∗m. (2.6b)

In this case, (2.1) becomes

iψj,t + ajψj,xx +
n∑

m=1

{cm[(ψm|2)x(aj + am)ψj + 2ψ∗m(ajψmψj,x − amψjψm,x)]}

+
( n∑
m=1

cm|ψm|2
)2

ajψj = 0. (2.7)

Note that, via the rescalingψm→ ψ ′m = |cm|−1/2ψm, the constantscm can be eliminated,
except for their signs. Of course, forn = 1, (2.6) reproduces (1.1) (up to trivial rescalings).
For n = 2, it reads:

iψ1,t + a1ψ1,xx + 2a1(c1|ψ1|2+ c2|ψ2|2)ψ1,x + 2a1c1ψ
2
1ψ
∗
1,x + (a1− a2)c2ψ1ψ

∗
2ψ2,x

+(a1+ a2)c2ψ1ψ2ψ
∗
2,x + (c1|ψ1|2+ c2|ψ2|2)2a1ψ1 = 0 (2.7a)

iψ2,t + a2ψ2,xx + 2a2(c1|ψ1|2+ c2|ψ2|2)ψ2,x + 2a2c2ψ
2
2ψ
∗
2,x − (a1− a2)c1ψ2ψ

∗
1ψ1,x

+(a1+ a2)c1ψ1ψ2ψ
∗
1,x + (c1|ψ1|2+ c2|ψ2|2)2a2ψ2 = 0. (2.7b)

Let us now consider a different case in whichA is diagonalizable (indeed, without loss
of generality, diagonal) but not Hermitian; and, for the sake of simplicity, let us display the
special case withn = 2, namely

A =
(
h 0
0 h∗

)
C =

(
0 g

g∗ 0

)
(2.8)

with h andg two arbitrary complex constants. Note that this choice satisfies (2.3) and (2.5).
Then (2.1) reads

iψ1,t + hψ1,xx + 2hψ1 Re(gψ∗1ψ2)x + 4hψ1,x Re(gψ∗1ψ2)

+2iψ1 Im(hg∗ψ1ψ
∗
2,x + h∗gψ∗1,xψ2)+ 4hψ1[Re(gψ∗1ψ2)]

2 = 0 (2.9a)

iψ2,t + h∗ψ2,xx + 2h∗ψ2 Re(gψ∗1ψ2)x + 4h∗ψ2,x Re(gψ∗1ψ2)

+2iψ2 Im(hg∗ψ1ψ
∗
2,x + h∗gψ∗1,xψ2)+ 4h∗ψ2[Re(gψ∗1ψ2)]

2 = 0 . (2.9b)

Finally, let us display a third case, again withn = 2 for the sake of simplicity, in which
A is not diagonalizable (and, without loss of generality, in Jordan form):

A =
(

1 a exp(iα)
0 1

)
C =

(
0 b exp(iα)

b exp(−iα) c

)
(2.10)

with a, b, c andα four arbitrary real constants. Note that this choice satisfies (2.3) and
(2.5).

Then (2.1) reads

iψ1,t + ψ1,xx + a exp(iα)ψ2,xx + Fx [ψ1+ a exp(iα)ψ2]

+2F [ψ1+ a exp(iα)ψ2]x +Gψ1+ F 2[ψ1+ a exp(iα)ψ2] = 0 (2.11a)

iψ2,t + ψ2,xx + 2Fψ2,x + (G+ Fx + F 2)ψ2 = 0 (2.11b)

F = 2bRe[exp(iα)ψ∗1ψ2] + c|ψ2|2 (2.11c)

G = 2i{b Im[exp(iα)(ψ2ψ
∗
1,x − ψ∗1ψ2,x)] + (ab + c) Im(ψ2ψ

∗
2,x)}. (2.11d)
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We close this section with a brief discussion of the problem of reducing the numbern

of components of the vectorψ that satisfies the multicomponent Eckhaus equation (2.1). A
trivial reduction is obtained by requiring thatψ is a linear combination ofp < n linearly
independent eigenvectors ofA, say Av(j) = ajv

(j), j = 1, 2, . . . , p,ψ = ∑p

j=1ψjv
(j).

One then reobtains (2.7), withn replaced byp. In the simplest casep = 1, after obvious
rescalings, this reduces, of course, to the Eckhaus equation (1.1).

A less trivial reduction obtains, by requiring that the solutionψ of (2.1) solves the
algebraic equation,

σψ = ψ∗ (2.12)

where then×n matrix σ is such that

σA + A∗σ = 0 (2.13)

in order to guarantee that equations (2.1) and (2.12) are compatible. Indeed, reduction
equation (2.12) implies a relation between the entries ofψ, which reduces the number of
independent fields. Below we display two simple instances of this reduction technique for
n = 2.

Let us first consider the two-vector Eckhaus equation (2.7) witha1 ≡ a = −a2; then
the matrixσ which satisfies the condition (2.13) is easily found to be

σ =
(

0 1/λ
λ∗ 0

)
(2.14)

with λ an arbitrary complex constant; and the reduction equation (2.12) impliesψ1 ≡
ψ,ψ2 = λψ∗. In this way, the two coupled equations (2.7) reduce to the scalar Eckhaus
equation (1.1), after obvious rescalings of the dependent and independent variables.

Next consider the two-vector Eckhaus equation (2.9) withh = id, d = d∗; then the
matrix σ in (2.13) is the unit matrix

σ =
(

1 0
0 1

)
(2.15)

and the reduction equation (2.12) coincides with the reality conditionψ∗j = ψj , j = 1, 2.
In this case, system (2.9) becomes real, and it reads

ψ1t + d{ψ1xx + 4gψ1[(ψ1ψ2)x + g(ψ1ψ2)
2]} = 0 (2.16a)

ψ2t − d{ψ2xx + 4gψ2[(ψ1ψ2)x + g(ψ1ψ2)
2]} = 0 (2.16b)

whereg and d are arbitrary real constants (they can both be set to unity by appropriate
rescalings).

We finally note that, in contrast, no reduction of type (2.12) exists for the system (2.11)
(with a 6= 0).

3. Derivation and technique of solution

Let then-vectorϕ(x, t) satisfy the (linear one-dimensional) Schrödinger equation

iϕt + Aϕxx = 0. (3.1)

It is then clear that the (real; see (2.2) and (2.5)) ‘charge density’ρ(x, t),

ρ = (ϕ,Cϕ) (3.2)

satisfies the ‘charge conservation’ equation

ρt = jx (3.3)
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with the (real; see (2.2) and (2.3)) ‘current’j (x, t) defined as follows

j = i[(ϕ,CAϕx)− (ϕx,CAϕ)] (3.4a)

j = 2 Im(ϕx,CAϕ). (3.4b)

Here we are of course using (2.3) and (2.5).
Now introduce then-vectorψ(x, t) via the position

ϕ = Vψ (3.5)

whereV is a real scalar function,

V ∗(x, t) = V (x, t). (3.6)

It is then easily seen that, if one defines new ‘charges’ and ‘currents’R(x, t) andJ (x, t)
via the position

R = (ψ,Cψ) (3.7)

J = i[(ψ,CAψx)− (ψx,CAψ)] (3.8a)

J = 2 Im(ψx,CAψ) (3.8b)

there holds (as consequence of the reality ofV , see (3.6), and of course of the position
(3.5)) the relation

ρ = V 2R (3.9a)

as well as

j = V 2J. (3.9b)

Introduce now the real scalar functionu(x, t) via the positions

ux = ρ (3.10a)

ut = j (3.10b)

whose compatibility is guaranteed by (3.3), and likewise the real scalar functionU(x, t) via
the positions

Ux = R (3.11a)

Ut = J. (3.11b)

The compatibility of these last positions requires validity of the ‘charge conservation’
equation

Rt = Jx. (3.12)

It is indeed easily seen that this equality is implied by (3.3) and (3.9), provided (as we
hereafter assume)

V (x, t) = V [U(x, t)]. (3.13)

We may now compute the evolution equation satisfied byψ(x, t). Indeed (3.5), (3.13)
and (3.11b) entail (V ′(U) = dV (U)/dU)

ϕt = V ′(U)Jψ + V (U)ψt (3.14a)

while (3.5), (3.13) and (3.11a) entail

ϕx = V ′(U)Rψ + V (U)ψx (3.14b)

ϕxx = V ′′(U)R2ψ + V ′(U)[Rxψ + 2Rψx ] + V (U)ψxx. (3.14c)
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Hence (3.1) yields

iψt + Aψxx + [V ′(U)/V (U)](iJψ + RxAψ + 2RAψx)+ [V ′′(U)/V (U)]R2Aψ = 0.

(3.15)

This evolution equation forψ should be supplemented by (3.11), and of course by (3.7)
and (3.8). Note that the choice of the functionV (U) remains our privilege. Now we make
the simplest choice

V (U) = exp(U) (3.16)

whereby theU -dependence disappears from (3.15), which then coincides with then-
component Eckhaus equation (2.1).

Having thereby completed the derivation of then-component Eckhaus equation, let us
indicate the technique to solve it. The key is relation (3.5) among then-vectorψ(x, t),
which satisfies then-component Eckhaus equation (2.1), and then-vectorϕ(x, t), which
satisfies thelinear Schr̈odinger equation (3.1). Via (3.16), (3.11a) and (3.7), this formula
reads

ϕ(x, t) = ψ(x, t)exp

[ ∫ x

−∞
dx ′(ψ(x ′, t),Cψ(x ′, t))

]
. (3.17a)

Hereafter we assume for simplicity that the fieldψ(x, t) (henceϕ(x, t) as well) vanish
asymptotically asx →−∞ at least as|x|ε−1/2 with ε < 0.

The inverse formula reads

ψ(x, t) = ϕ(x, t)
[

1+ 2
∫ x

−∞
dx ′(ϕ(x ′, t),Cϕ(x ′, t))

]−1/2

. (3.17b)

For completeness, we provide a derivation of this formula in the appendix.
Explicit solutions of then-component Eckhaus equation (2.1) can now be easily

constructed by inserting solutionsϕ(x, t) of the linear Schr̈odinger equation (3.1) into
(3.17b).

The Cauchy problem for then-component Eckhaus equation (2.1)—namely, the problem
to evaluateψ(x, t) from a givenψ(x, 0)—is solved by using (3.17a) to evaluateϕ(x, 0),
by then solving thelinear Schr̈odinger equation (3.1) in order to obtainϕ(x, t), and finally
by obtainingψ(x, t) via (3.17b).

Let us also display the resolving formulae for the special cases displayed in the previous
section. The linearizing formula (3.17b) corresponding to the two-component equation (2.7)
reads

ψj(x, t) = ϕj (x, t)
{

1+ 2
∫ x

−∞
dx ′[c1|ϕ1(x

′, t)|2+ c2|ϕ2(x
′, t)|2]

}−1/2

j = 1, 2

(3.18)

whereϕj is a solution of the scalar Schrödinger equation iϕj,t + ajϕj,xx = 0. For system
(2.9), solution (3.17b) reads

ψj(x, t) = ϕj (x, t)
{

1+ 4
∫ x

−∞
dx ′ Re[gϕ∗1(x

′, t)ϕ2(x
′, t)]

}−1/2

j = 1, 2 (3.19)

with ϕ1 and ϕ2 solutions of the scalar equations iϕ1,t + hϕ1,xx = 0 and, respectively,
iϕ2,t + h∗ϕ2,xx = 0. And for the third system of equations (2.11), one obtains the solution

ψj(x, t) = ϕj (x, t)
{

1+ 2c
∫ x

−∞
dx ′|ϕ2(x

′, t)|2

+4b
∫ x

−∞
dx ′ Re[exp(iα)ϕ∗1(x

′, t)ϕ2(x
′, t)]

}−1/2

j = 1, 2. (3.20)
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Hereϕ2(x, t) is a solution of the scalar Schrödinger equation iϕ2,t+ϕ2,xx = 0, whileϕ1(x, t)

is given by the formula

ϕ1(x, t) = ϕ̃1(x, t)+ ia exp(iα)tϕ2,xx(x, t) (3.21)

where ϕ̃1 satisfies the same Schrödinger equation, ĩϕ1,t + ϕ̃1,xx = 0, asϕ2. This formula
follows from the triangularity of the two-component linear Schrödinger equation (3.1) with
(2.10).

4. Examples of soliton solutions

In this section we construct some explicit solutions of then-vector Eckhaus equation in the
casen = 2.

We first assume that bothA andC are real, diagonal matrices. In this caseψ1(x, t) and
ψ2(x, t) satisfy the two coupled nonlinear equations (2.7a) and (2.7b). Just for definiteness,
and without loss of generality, we also assume the dispersion coefficients to be positive,
a1 > 0 anda2 > 0.

Explicit solutions are easily obtained via the linearizing transformation (3.17b), which,
in this particular case, becomes (see (3.18))

ψj(x, t) = ϕj (x, t)

(φ(x, t))1/2
j = 1, 2 (4.1a)

φ(x, t) = 1+ 2
∫ x

−∞
dx ′(c1|ϕ1(x

′, t)|2+ c2|ϕ2(x
′, t)|2) (4.1b)

whereϕj (x, t) (j = 1, 2) is a solution of the Schrödinger equation

iϕj,t + ajϕj,xx = 0. (4.2)

General (discrete spectrum) solutions of (4.2) can be written as

ϕ1(x, t) =
n∑
k=1

exp[ã1k(x, t)+ ib1k(x, t)] (4.3a)

ϕ2(x, t) =
m∑
k=1

exp[ã2k(x, t)+ ib2k(x, t)] (4.3b)

ãjk(x, t) = pjk(x − vjkt)+ ln |Ajk| (4.4)

bjk(x, t) = vjk

2aj
(x − wjkt)+ αjk (4.5)

Ajk = |Ajk| exp(iαjk) (4.6)

wjk = 1
2vjk − 2(ajpjk)

2/vjk. (4.7)

Here theAjk are n + m arbitrary complex constants; thevjk are n + m arbitrary real
parameters and thepjk aren+m arbitrarypositiveparameters, labelled in increasing order

0< p11 6 p12 · · · 6 p1n (4.8a)

0< p21 6 p22 · · · 6 p2m. (4.8b)

We note that the choicepjk > 0 in (4.8) entails that bothϕj (x, t) and ψj(x, t) vanish
asymptotically asx → −∞, hence it guarantees convergence of the integral in definition
(4.1b). We also note that solution (4.1a) may be singular at the zeros of the denominator
φ(x, t), see (4.1). In order to avoid singularities, it is sufficient to assume, as we do
hereafter, thatc1 > 0 andc2 > 0.
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The functionφ(x, t) in (4.1a) can now be evaluated via (4.1b), (4.3) and (4.4)–(4.7).
It has the form

φ(x, t) = 1+ 2c1

[ n∑
k=1

1

2p1k
exp[2ã1k(x, t)] + 2

n∑
k=2

k−1∑
`=1

[
(p1k + p1`)

2

+
(
v1k − v1`

2a1

)2 ]−1/2

exp[ã1k(x, t)+ ã1`(x, t)] cos(b1k(x, t)

−b1`(x, t)+ β(1)k` )
]
+ 2c2

[ m∑
k=1

1

2p2k
exp[2ã2k(x, t)]

+2
m∑
k=2

k−1∑
`=1

[
(p2k + p2`)

2+
(
v2k − v2`

2a2

)2 ]−1/2

exp[ã2k(x, t)+ ã2`(x, t)]

× cos(b2k(x, t)− b2`(x, t)+ β(2)k` )
]

(4.9)

with

β
(j)

k` = arctan

[
1

2aj

(vjk − vj`)
(pjk + pj`)

]
j = 1, 2. (4.10)

In the following we concentrate our attention on the behaviour of the squared modulus of
ψj(x, t), which has the expression

|ψj(x, t)|2 = |ϕj (x, t)|
2

φ(x, t)
j = 1, 2 (4.11)

with φ(x, t) given by (4.9) and

|ϕ1(x, t)|2 =
n∑
k=1

exp(2ã1k(x, t))+ 2
n∑
k=2

k−1∑
`=1

exp(ã1k(x, t)+ ã1`(x, t)).

× cos(b1k(x, t)− b1`(x, t)) (4.12a)

|ϕ2(x, t)|2 =
m∑
k=1

exp(2ã2k(x, t)+ 2
m∑
k=2

k−1∑
`=1

exp(ã2k(x, t)+ ã2`(x, t)).

× cos(b2k(x, t)− b2`(x, t)). (4.12b)

We assume for simplicityp1n > p1n−1 andp2m > p2m−1, and consider first the case
p1n > p2m. The above formulae then imply that|ψ1(x, t)|2 has a kink profile

|ψ1(x, t)|2→
{
p1n/c1 asx →+∞
0 asx →−∞ (4.13)

while |ψ2(x, t)|2 is localized

|ψ2(x, t)|2→ 0 asx →±∞. (4.14)

Of course in the opposite case,p1n < p2m, |ψ1(x, t)|2→ 0 asx →±∞ (localized profile)
while |ψ2(x, t)|2→ p2m/c2 asx →+∞ (kink profile).

If insteadp1n = p2m = p, both|ψ1(x, t)|2 and|ψ2(x, t)|2 tend to time-dependent values
asx →+∞. Indeed (4.11), (4.9) and (4.12) then imply

|ψ1(x, t)|2−−−−−−→
x →+∞p|A1n|2/{c1|A1n|2+ c2|A2m|2 exp[2p(v1n − v2m)t ]} (4.15a)

|ψ2(x, t)|2−−−−−−→
x →+∞p|A2m|2/{c2|A2m|2+ c1|A1n|2 exp[2p(v2m − v1n)t ]}. (4.15b)
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Note that these asymptotic expressions become constant ifv1n = v2m.
If we assumev1n > v2m, (4.15a) and (4.15b) imply that in the remote past(t →

−∞)|ψ1(∞, t)|2 tends to the constant valuep/c1, while |ψ2(∞, t)|2 vanishes exponentially;
in the future(t → +∞), |ψ1(∞, t)|2 vanishes exponentially while|ψ2(∞, t)|2 tends to
p/c2. We have of course an opposite behaviour in the casev1n < v2m.

Next we show that in the simplest case,n = m = 1 (we drop the indexk in (4.9) and
(4.12)), with the assumptionp1 = p2 = p > 0, the wave profiles (|ψj(x, t)|2)x exhibit a
boomeronic behaviour [12]. To this aim it is convenient to setv1 = −v2 = v > 0. With
these parameters the expressions (4.11), with (4.12) and (4.9), specialize to

|ψj(x, t)|2 = p

2cj
exp[2pzj (t)]{1+ tgh[p(x − ξj (t))]} j = 1, 2 (4.16)

with the following notation:

ξ1(t) = x1+ z1(t)+ vt ξ2(t) = x2+ z2(t)− vt (4.17a)

xj = − 1

2p
ln(cj |Aj |2/p) j = 1, 2 (4.17b)

z1(t) = − 1

2p
ln{1+ exp[2p(x1− x2+ 2vt)]} (4.17c)

z2(t) = − 1

2p
ln{1+ exp[−2p(x1− x2+ 2vt)]}. (4.17d)

These simple explicit expressions need few comments. The charge density|ψj |2 has a kink
profile whose jump,|ψj(+∞, t)|2 − |ψj(−∞, t)|2, evolves fromp/c1 to zero ast goes
from −∞ to +∞ for j = 1, and instead from zero top/c2 for j = 2. A simpler picture
obtains, by looking at thex-derivatives, namely at the expression

(|ψj(x, t)|2)x = p2

2cj

exp[2pzj (t)]

cosh2[p(x − ξj (t))]
j = 1, 2. (4.18)

Indeed, it is easily found that the asymptotic velocitiesξ̇j = dξj /dt of the solitary profile
of both the upper (j = 1) and lower (j = 2) component have opposite signs att = ±∞,
namely

ξ̇j (t) −→ ∓v t →±∞ j = 1, 2 . (4.19)

This displays the boomeronic character [12] of the motion of these solitons. Moreover, the
peak amplitudes of the solitary waves (4.18) forj = 1 andj = 2 evolve in time in opposite
ways, namely

(|ψ1(ξ1(t), t)|2)x →


p2

2c1
t →−∞

0 t →+∞
(4.20a)

(|ψ2(ξ2(t), t)|2)x →


0 t →−∞
p2

2c2
t →+∞.

(4.20b)

Appendix. Derivation of (3.17b) from (3.17a)

Let us start from the relation

ρ(x, t) = R(x, t)exp

[
2
∫ x

−∞
dx ′R(x ′, t)

]
(A.1)
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which is implied by (3.2), (3.7) and (3.17a). This implies

ρx/ρ = Rx/R + 2R (A.2a)

as well as

lim
x→−∞[ρ(x, t)/R(x, t)] = 1. (A.2b)

Now set

ψ = fϕ (A.3)

hence (via (3.2) and (3.7))

R = f 2ρ (A.4)

hence (via (A.2a) and (A.4))

fxf
−3 = −ρ (A.5a)

and (via (A.2b))

f (−∞, t) = 1. (A.5b)

Hence

f (x, t) =
[

1+ 2
∫ x

−∞
dx ′ρ(x ′, t)

]−1/2

. (A.6)

Via (A.3) and (3.2) this yields (3.17b).
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